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It has been shown by numerous investigations of the compression and rarefaction wave 
structure in metals under shock loading conditions to pressures of tens of gigapascals that 
the strength properties of materials that govern the load pulse evolution therein are, to a 
considerable degree, substantially of relaxation nature under these conditions. This appears 
in experiment as a diminution in the amplitude of the forerunner as it moves [I-3], the dis- 
crepancy of amplitudes of the elastic forerunners in the compression and rarefaction waves 
[4, 5], the elastic--plastic nature of the "recharging" compression wave under step loading 
[6, 7], and the drop in the resistance to plastic deformation under successive loading by two 
compression pulses [5, 8]. A model obtained from examining the dynamics of dislocations is 
proposed in [9, i0] to describe the kinetics of plastic deformation. Different modifications 
of this model are proposed in [5, 11-14], but no sufficiently complete quantitative descrip- 
s of the material reaction to a pulse load has been obtained up to now. In this paper, 
kinetic relationships based on a somewhat different representation of the dislocation defor- 
mation mechanism used in [9-14] are proposed to describe plastic deformation. 

Comparing the results of gasdynamic computations using the proposed plastic deformation 
kinetics with experimental data confirms it as realistic at all stages of the process in a 
compression pulse. 

The possible plastic deformation mechanisms in a shock wave and the residual metal struc- 
ture are discussed most completely in [15]. It should be clarified how detailed the descrip- 
tion of the strain mechanism should be in a theological model. At this time it is not reli- 
aBle to quantitatively analyze all the details of a multifactor process of plastic deforma- 
tion at a microlevel for the description of the behavior of a macroscopic body. However, un- 
derstanding of the basic features of the mechanism of the phenomenon facilitates the selec- 
tion of parameters describing the average properties of the material, and of the functional 
form of the kinetic relationships. 

The magnitude of the plastic shear strain y is determined completely by the dislocations 
N and their mean displacement S [16]: 

= b N S  (1) 

(b, Burgers vector). Differentiating (1) yields.an expression for the strain rate, deter- 
mined by the rate of dislocation multiplication N and the mean velocity of their motion Vav 

= bNS + bNvav. Since blocking occurs during the interaction of dislocations with each other 
as well as with the grain boundaries, inclusions,~and other defects, and only a part of the 
total quantity of dislocations actually possesses mobility, then it is expedient to rewrite 
the last relationship in the form 

? = b N S  + b N m v ,  (2) 

where  Nm i s  t h e  d e n s i t y  o f  t h e  moving  d i s l o c a t i o n s ,  v i s  t h e  a v e r a g e  v e l o c i t y  o f  t h e  moving  
d i s l o c a t i o n s .  The f i r s t  t e r m  i n  (2) i s  o r d i n a r i l y  n e g l e c t e d  [ 9 - 1 5 ] ,  w h i l e  t h e  q u a n t i t i e s  N m 
and v a r e  d e t e r m i n e d  by  u s i n g  d i f f e r e n t  e m p i r i c a l  o r  s e m i e m p i r i c a l  r e l a t i o n s h i p s .  I t  mus t  
be  s a i d  t h a t  i n  t h i s  c a s e  o n l y  a p a r t i a l  d e s c r i p t i o n  of  t h e  e v o l u t i o n  o f  a c o m p r e s s i o n  p u l s e  
i s  a c t u a l l y  a s s u r e d  ( t h e  law o f  t h e  d rop  i n  t h e  a m p l i t u d e  o f  t h e  e l a s t i c  f o r e r u n n e r  [9 ,  1 0 ] ,  
t h e  p r o f i l e  o f  a s t a t i o n a r y  p l a s t i c  s h o c k  [ 1 1 ] ) .  For  c a r e f u l l y  c o n t r o l l a b l e  e x p e r i m e n t  c o n -  
d i t i o n s ,  s a t i s f a c t o r y  a g r e e m e n t  i s  o b t a i n e d  b e t w e e n  t h e  r e s u l t s  o f  a c o m p u t a t i o n  and m e a s u r e -  
ment  when the initial moving dislocation density is 1-3 orders above the total dislocation 
density in the initial material. 
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TABLE i (continued on top of next page) 
! 

Material co, crn/sec l " m Oo, g/cm �9 Sec 2 l 
/ 

Aluminum 5'34'i05 I 1,36 2,27.10 u i,7i I i0-a 

m i 

p,=2,7i g/cm S 
I I 

Iron 4,63.i0 a 8,36.i011 --i,39 4.i0 -~~ 
po=7,85 g/cm "~ 

t,5 

I K,,~c/g 

On the other hand, if typical values of the dislocation density are taken in metals pro- 
cessed by shocks [15] (N = 10*~ cm -2) and the actual dislocation path length is taken 
comparable in order of magnitude to the shock front width (10-s-10 -s cm) [Ii, 15], then it 
follows from (i) and (2) that just multiplication of the dislocations can assure strain val- 
ues characteristic for plane shocks. This impels turning to a two-term kinetic relation- 
ship (2). 

It is known that shock loading yields greater hardening and a higher dislocation density 
than deformation under ordinary conditions [18]. The comparison performed in [19] between the 
results of processing a copper single-crystal with respect to a smooth, "quasiientropic" com- 
pression wave and a shock also shows that hardening of the material is considerably higher in 
the latter case. The shock specifics in this respect is that higher shear stresses are rea- 
lized in its front [20], which affords a foundation for introducing dislocation dependent on 
the acting shear stress in the description of multiplication of the "plastic deformation car- 
riers." 

An exponential dependence of the rate of growth and multiplication of the dislocations 
on the magnitude of the acting shear stress T is introduced in the model we developed. The 

selection of such a relationship between ~ and T is based on the known logarithmic dependence 
between the flow limit and the strain rate [21], Since an increase in specimen volume is as- 
sociated with the dislocation formation, a pressure dependence should be introduced in the 
governing relationship for N. Because of the inadequacy of the data, the dependence of ~ on 
the pressure p is constructed with a computation such that the shear strength of the material 
would vanish for a pressure corresponding to the ultimate theoretical rupture strength be- 
cause of the spontaneous generation of dislocations~ 

It is known that the natural dislocation field reduces the efficiency of their sources 
[16], this is one of the reasons for deformation hardening. It is shown in a number of pa, 
pers (see [15-18, 22]s for instance) that for a fixed strain rate, the shear stress is pro- 
portional to the square root of the dislocation density. 

Therefore, taking the above into account, the dependence of the rate of dislocation mul- 
tiplication on the effective shear stress, pressure, and dislocation density achieved is se- 
lected in the form 

bNS = K ~ S  exp [[T[~o(i - -  p l p ~ ) y i  + K~Nbl. ( 3 )  

The quantity Pk was estimated by extrapolation in the negative pressure domain of the shock 
adiabat or isentropy of the material, while the quantities K, and to are selected from the 
dependence of the yield point on the strain rate; the hardening factor K2 was chosen empir- 
ically. 

To describe the second component in the right side of (2), the density of the moving dis- 
locations and the dependence of their velocities on the effective shear stress must be deter- 
mined. Recent measurements [22] showed that to velocities commensurate with the speed of 
sound, the dependence of the strain rate on the effective shear stress can be described by 
the viscous retardation law: 

v = ~b/B, (4) 

where B is the retardation constant with the value (1-10).10 -5 kg/(m-sec) [I0, 12, 23]. The 
quantity B was assumed dependent on the pressure in the computations as B = Bo(l -- P/Pk) by 
analogy with (3). When using (4), the moving dislocations should be understood to be just 
those dislocations (or their sections), which are not fastened at a given instant; disloca- 
tions temporarily delayed by an obstacle are considered fastened during the delay time. 
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TABLE 1 (continued) 

Material 

Aluminum 
P0 =2.71 ~cm s 

Iron 
= 7.85 g/cm s 

5. t07 

7,5 .  tO ~ 

p~,  g / c m  �9 

--1011 

--2,5. t011 

•,, cm 

t0-3 

2. t0 -4 

bi .oo2. I I sec/g cm -1 

t0-~ t0-1 t 

7,5. t0 -s t0-1 l 

t * ,  SeC 

10-8 

5. I0 -s 

S, cm 

10-4 

2.10 -~ 

Complete or partial blocking of the moving dislocations occurs during plastic deforma- 
tion. Preliminary computations of shock processes and their comparison with the results of 
experiments [24] showed that the characteristic viscosity of the material in direct proximity 
to the shock front is substantially less for equal shear stresses than at a distance. This 
can be conceived as the result of diminishing the moving dislocation density with time be- 
cause of their being blocked. Such an assumption is in agreement with the dependence of the 
residual dislocation density on the duration of the compression pulse observed in experiments 
with conservation of the specimens [25]. Because of the high uncertainty in the question of 
the kinetics of blocking moving dislocations, a relationship selected by empirical means 

F = i - -  ( N m  - -  N • ) / t *  for N,~ > N~, 
( 0 for N . ~ N : ,  

(5) 

was used to describe this process in the computations proposed, where the magnitudes of the 
"equilibrium" moving dislocation density N~ and the characteristic time t* were selected em- 
pirically. Therefore, the magnitude of the moving dislocation density is determined by the 
relationship 

t 

N , ,  = ~ (~V + F) dr. (6) 
0 

To c o n f i r m  w h e t h e r  t h e  p r o p o s e d  p l a s t i c  d e f o r m a t i o n  k i n e t i c s  i s  r e a l i s t i c ,  n u m e r i c a l  mod- 
e l i n g  o f  t h e  o n e - d i m e n s i o n a l  f l o w  d u r i n g  t h e  c o l l i s i o n  o f  p l a t e s  was p e r f o r m e d .  The s y s t e m  
o f  e q u a t i o n s ,  i n c l u d i n g  t h e  c o n t i n u i t y  and m o t i o n  e q u a t i o n s  i n  t h e  L a g r a n g e  f o r m ,  t h e  e q u a -  
t i o n s  o f  s t a t e  f o r  t h e  g l o b a l  s t r e s s  and s t r a i n  t e n s o r  c o m p o n e n t s ,  and t h e  r a t e s  o f  change  o f  
t h e  d e v i a t o r  componen t s  i n  t h e  o n e - d i m e n s i o n a l  s t r a i n  c a s e  u n d e r  c o n s i d e r a t i o n  as  w e l t  as  t h e  
p l a s t i c  d e f o r m a t i o n  k i n e t i c s  i n  t h e  fo rm ( 2 ) - ( 6 )  

O% aV Ou 
O, Po ~ ' O, ~)o Ot Oh Oh 

p (V) : 90c~ {exp [4m (V 0 - -  V)/Vo] - -  1}/4m, 

oe~  oe~ 0% _ t ov  o~xe~ , oe~ 
o - - 7 - - - - 7 - - -  o - - F - - - - - 7 "  o-7-= ot ~ ot 

OeX el I oax v oePl b .~S : bNmv,  
ot G Ot ' Ot 

G = G O ~- lp ,  a~ u = T (~x - -  P), 

(7) 

was solved by a through method using a checkerboard mesh and quadratic pseudoviscosity, where 
V is the specific volume, po = i/Vo is the density of the substance at zero pressure (p = 0), 
u is the mass flow rate, h is the substantial space coordinate, ~x, Oxy are the normal (in 
the compression direction) and maximal shear stresses, taken as positive under compression, 
co, m are coefficients in the linear relationship between the shock velocity and the jump in 
the mass flow rate, ex, Ey, exy are the normal and maximal shear strain components, E el , e pl 
are the elastic and plastic components of the total strain E, G is the shear modulus, for 
which the dependence of its magnitude on the pressure was computed from measured values [4, 
23, 26] of the longitudinal sound speed and determined by the equation of state p(V) of vol- 
ume compressibility of the material. The computation is oriented to the relatively low pres- 
sures of shock compression of metals at which temperature changes are moderate, hence, the 
energy equation and temperature components of the equations of state were not taken into con- 
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sideration. Because of the strong dependence of the plastic strain rate on the shear stress, 
were as in [3, 11-14] it was assumed that plastic deformation only goes in the maximum shear 
stress directions. 

The initial and boundary conditions of system (7) and the material constants were taken 
corresponding to the cases of loading Armco iron or AD-I aluminum plates by the impact of an 
aluminum plate 2-7 mm thick at a velocity of 400-1500 m/see. The computation results were 
compared with profiles of Ox(t) in several sections of the specimens, obtained experimentally 
by using manganin pressure sensors, and with velocity profiles of the free surface of the 
specimen w(t), measured by using capacitative velocity sensors. A description of the set-up 
of the experiments and part of the experimental data are published in [24, 27]. 

Constants of the kinetics of the plastic deformation of materials are presented in the 
table and assure the best agreement between the computed and experimental data. The pro- 
files of Ox(t) and w(t) for aluminum, obtained from experiments (dashes) and model computa- 
tions are compared in Figs. la and b. The numbers correspond to the initial distance between 
the section being inspected and the collision surface in millimeters. Computation is com- 
pared with experiment for cases of specimen loading by the impact of an aluminum plate of 
thickness ~ = 5 ~ Wy = 590 m/see, and ~ =4mm, wy = 1520 m/see (Fig. la);~ = 2 mm, Wy = 460 
m/see (Fig. ib). The computed and experimental data for iron are compared in Figs. 2a and b. 
The cases ~ = 5 mm, wy = 590 m/see (Fig. 2a and b), 6 = 7 R_m, Wy = 1050 m/see (Fig. 2a) ~ = 
2 mm, Wy = 600 m/see (Fig. 2b) were modeled here. 

Taking into account the possibility of inducing systematic distortions in the relatively 
low pressure range [27] by the inertia of the manganin sensorsp it can be noted that in quali- 
tative and quantitative respects the agreement between the computation and measurement re- 
sults is good enough in all stages of the compression pulse. Therefore, the proposed plastic 
deformation kinetics assures a detailed description of the evolution of a compression pulse 
in metals. 

The author is grateful to A. N. Dremin for attention to the research and to M. A. Mo- 
gilevskii for discussion of its results. 
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